Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38710235

RESUMO

BACKGROUND: LCP1 encodes L-plastin, an actin-bundling protein primarily expressed in hematopoietic cells. In mouse and fish models, LCP1 deficiency has been shown to result in hematological and immune defects. OBJECTIVE: To determine the nature of a human inborn error of immunity resulting from a novel genetic variant of LCP1. METHODS: We performed genetic, protein and cellular analysis of PBMCs from a kindred with apparent autosomal dominant immune deficiency. We identified a candidate causal mutation in LCP1, which we evaluated by engineering the orthologous mutation in mice and Jurkat cells. RESULTS: A splice-site variant in LCP1 segregated with lymphopenia, neutropenia, and thrombocytopenia. The splicing defect results in at least two aberrant transcripts, producing an in-frame deletion of 24 nucleotides, and a frameshifting deletion of exon 8. Cellular analysis of the kindred revealed a proportionate reduction of T and B cells, and a mild expansion of transitional B cells. Similarly, mice carrying the orthologous genetic variant exhibited the same in-frame aberrant transcript, reduced expression Lcp1 and gene dose-dependent leukopenia, mild thrombocytopenia, and lymphopenia, with a significant reduction of T cell populations. Functional analysis revealed that LCP1c740-1G>A confers a defect in platelet development and function with aberrant spreading on collagen. Immunological analysis revealed defective actin organisation in T cells, reduced migration of PBMCs from patients, splenocytes from mutant mice, and a mutant Jurkat cell line in response to CXCL12, impaired germinal centre B cell expansion after immunisation, and reduced cytokinesis during T cell proliferation. CONCLUSION: We describe a unique human hematopoietic defect affecting neutrophils, lymphocytes and platelets, arising from partial LCP1 deficiency.

2.
Nat Commun ; 14(1): 1455, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927839

RESUMO

Identifying how small molecules act to kill malaria parasites can lead to new "chemically validated" targets. By pressuring Plasmodium falciparum asexual blood stage parasites with three novel structurally-unrelated antimalarial compounds (MMV665924, MMV019719 and MMV897615), and performing whole-genome sequence analysis on resistant parasite lines, we identify multiple mutations in the P. falciparum acyl-CoA synthetase (ACS) genes PfACS10 (PF3D7_0525100, M300I, A268D/V, F427L) and PfACS11 (PF3D7_1238800, F387V, D648Y, and E668K). Allelic replacement and thermal proteome profiling validates PfACS10 as a target of these compounds. We demonstrate that this protein is essential for parasite growth by conditional knockdown and observe increased compound susceptibility upon reduced expression. Inhibition of PfACS10 leads to a reduction in triacylglycerols and a buildup of its lipid precursors, providing key insights into its function. Analysis of the PfACS11 gene and its mutations point to a role in mediating resistance via decreased protein stability.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Mutação , Ligases/metabolismo
3.
STAR Protoc ; 4(1): 102002, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36609153

RESUMO

Here, we provide a protocol using chemical pulldown combined with mass spectrometry (LC-MS/MS) to identify drug targets in Plasmodium falciparum. This approach works upon the principle that a resin-bound inhibitor selectively binds its molecular target(s) in cell-free lysates. We describe the preparation of drug beads and P. falciparum lysate, followed by chemical pulldown, sample fractionation, and LC-MS/MS analysis. We then detail how to identify specifically bound proteins by comparing protein enrichment in DMSO-treated relative to drug-treated lysates via quantitative proteomics. For complete details on the use and execution of this protocol, please refer to Milne et al. (2022).1.


Assuntos
Antimaláricos , Cromatografia Líquida/métodos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/metabolismo , Espectrometria de Massas em Tandem/métodos , Proteínas/metabolismo , Plasmodium falciparum
4.
Antimicrob Agents Chemother ; 66(11): e0058322, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36286539

RESUMO

The antileishmanial activity of a series of (Z)-2-(heteroarylmethylene)-3(2H)-benzofuranone derivatives, possessing 5-nitroimidazole or 4-nitroimidazole moieties, was investigated against Leishmania major promastigotes and some analogues exhibited prominent activities. Compounds with IC50 values lower than 20 µM were further examined against L. donovani axenic amastigotes. Evaluated analogues in 5-nitroimidazole subgroup demonstrated significantly superior activity (~17-88-folds) against L. donovani in comparison to L. major. (Z)-7-Methoxy-2-(1-methyl-5-nitroimidazole-2-ylmethylene)-3(2H)-benzofuranone (5n) showed the highest L. donovani anti-axenic amastigote activity with IC50 of 0.016 µM. The cytotoxicity of these analogues was determined using PMM peritoneal mouse macrophage and THP-1 human leukemia monocytic cell lines and high selectivity indices of 26 to 431 were obtained for their anti-axenic amastigote effect over the cytotoxicity on PMM cells. Further studies on their mode of action showed that 5-nitroimidazole compounds were bioactivated predominantly by nitroreductase 1 (NTR1) and 4-nitroimidazole analogues by both NTR1 and 2. It is likely that this bioactivation results in the production of nitroso and hydroxylamine metabolites that are cytotoxic for the Leishmania parasite.


Assuntos
Antiprotozoários , Leishmania donovani , Nitroimidazóis , Humanos , Camundongos , Animais , Antiprotozoários/farmacologia , Antiprotozoários/metabolismo , Nitroimidazóis/farmacologia , Nitroimidazóis/metabolismo , Macrófagos , Nitrorredutases/metabolismo
5.
ACS Infect Dis ; 8(9): 1962-1974, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36037410

RESUMO

There is a pressing need for new medicines to prevent and treat malaria. Most antimalarial drug discovery is reliant upon phenotypic screening. However, with the development of improved target validation strategies, target-focused approaches are now being utilized. Here, we describe the development of a toolkit to support the therapeutic exploitation of a promising target, lysyl tRNA synthetase (PfKRS). The toolkit includes resistant mutants to probe resistance mechanisms and on-target engagement for specific chemotypes; a hybrid KRS protein capable of producing crystals suitable for ligand soaking, thus providing high-resolution structural information to guide compound optimization; chemical probes to facilitate pulldown studies aimed at revealing the full range of specifically interacting proteins and thermal proteome profiling (TPP); as well as streamlined isothermal TPP methods to provide unbiased confirmation of on-target engagement within a biologically relevant milieu. This combination of tools and methodologies acts as a template for the development of future target-enabling packages.


Assuntos
Antimaláricos , Lisina-tRNA Ligase , Malária , Antimaláricos/química , Antimaláricos/farmacologia , Descoberta de Drogas , Humanos , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Plasmodium falciparum/metabolismo
6.
Antimicrob Agents Chemother ; 66(6): e0023722, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35647647

RESUMO

Artemisinin-based combination therapies have been crucial in driving down the global burden of malaria, the world's largest parasitic killer. However, their efficacy is now threatened by the emergence of resistance in Southeast Asia and sub-Saharan Africa. Thus, there is a pressing need to develop new antimalarials with diverse mechanisms of action. One area of Plasmodium metabolism that has recently proven rich in exploitable antimalarial targets is protein synthesis, with a compound targeting elongation factor 2 now in clinical development and inhibitors of several aminoacyl-tRNA synthetases in lead optimization. Given the promise of these components of translation as viable drug targets, we rationalized that an assay containing all functional components of translation would be a valuable tool for antimalarial screening and drug discovery. Here, we report the development and validation of an assay platform that enables specific inhibitors of Plasmodium falciparum translation (PfIVT) to be identified. The primary assay in this platform monitors the translation of a luciferase reporter in a P. falciparum lysate-based expression system. Hits identified in this primary assay are assessed in a counterscreen assay that enables false positives that directly interfere with the luciferase to be triaged. The remaining hit compounds are then assessed in an equivalent human IVT assay. This platform of assays was used to screen MMV's Pandemic and Pathogen Box libraries, identifying several selective inhibitors of protein synthesis. We believe this new high-throughput screening platform has the potential to greatly expedite the discovery of antimalarials that act via this highly desirable mechanism of action.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética
7.
J Med Chem ; 65(7): 5606-5624, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35303411

RESUMO

African animal trypanosomiasis or nagana, caused principally by infection of the protozoan parasites Trypanosoma congolense and Trypanosoma vivax, is a major problem in cattle and other livestocks in sub-Saharan Africa. Current treatments are threatened by the emergence of drug resistance and there is an urgent need for new, effective drugs. Here, we report the repositioning of a compound series initially developed for the treatment of human African trypanosomiasis. A medicinal chemistry program, focused on deriving more soluble analogues, led to development of a lead compound capable of curing cattle infected with both T. congolense and T. vivax via intravenous dosing. Further optimization has the potential to yield a single-dose intramuscular treatment for this disease. Comprehensive mode of action studies revealed that the molecular target of this promising compound and related analogues is the cyclin-dependent kinase CRK12.


Assuntos
Trypanosoma congolense , Tripanossomíase Africana , Animais , Bovinos , Quinases Ciclina-Dependentes , Reposicionamento de Medicamentos , Trypanosoma vivax , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/veterinária
8.
Antimicrob Agents Chemother ; 66(1): e0153521, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34606338

RESUMO

Phenotypic screening identified an arylsulfonamide compound with activity against Trypanosoma cruzi, the causative agent of Chagas' disease. Comprehensive mode of action studies revealed that this compound primarily targets the T. cruzi proteasome, binding at the interface between ß4 and ß5 subunits that catalyze chymotrypsin-like activity. A mutation in the ß5 subunit of the proteasome was associated with resistance to compound 1, while overexpression of this mutated subunit also reduced susceptibility to compound 1. Further genetically engineered and in vitro-selected clones resistant to proteasome inhibitors known to bind at the ß4/ß5 interface were cross-resistant to compound 1. Ubiquitinated proteins were additionally found to accumulate in compound 1-treated epimastigotes. Finally, thermal proteome profiling identified malic enzyme as a secondary target of compound 1, although malic enzyme inhibition was not found to drive potency. These studies identify a novel pharmacophore capable of inhibiting the T. cruzi proteasome that may be exploitable for anti-chagasic drug discovery.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Descoberta de Drogas , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Trypanosoma cruzi/química
9.
Wellcome Open Res ; 5: 71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32500098

RESUMO

The rodent parasite Plasmodium chabaudi is an important in vivo model of malaria. The ability to produce chronic infections makes it particularly useful for investigating the development of anti- Plasmodium immunity, as well as features associated with parasite virulence during both the acute and chronic phases of infection. P. chabaudi also undergoes asexual maturation (schizogony) and erythrocyte invasion in culture, so offers an experimentally-amenable in vivo to in vitro model for studying gene function and drug activity during parasite replication. To extend the usefulness of this model, we have further optimised transfection protocols and plasmids for P. chabaudi and generated stable, fluorescent lines that are free from drug-selectable marker genes. These mother-lines show the same infection dynamics as wild-type parasites throughout the lifecycle in mice and mosquitoes; furthermore, their virulence can be increased by serial blood passage and reset by mosquito transmission. We have also adapted the large-insert, linear PlasmoGEM vectors that have revolutionised the scale of experimental genetics in another rodent malaria parasite and used these to generate barcoded P. chabaudi gene-deletion and -tagging vectors for transfection in our fluorescent P. chabaudi mother-lines. This produces a tool-kit of P. chabaudi lines, vectors and transfection approaches that will be of broad utility to the research community.

10.
ACS Med Chem Lett ; 11(4): 464-472, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32292551

RESUMO

An antikinetoplastid pharmacomodulation study was conducted at position 6 of the 8-nitroquinolin-2(1H)-one pharmacophore. Fifteen new derivatives were synthesized and evaluated in vitro against L. infantum, T. brucei brucei, and T. cruzi, in parallel with a cytotoxicity assay on the human HepG2 cell line. A potent and selective 6-bromo-substituted antitrypanosomal derivative 12 was revealed, presenting EC50 values of 12 and 500 nM on T. b. brucei trypomastigotes and T. cruzi amastigotes respectively, in comparison with four reference drugs (30 nM ≤ EC50 ≤ 13 µM). Moreover, compound 12 was not genotoxic in the comet assay and showed high in vitro microsomal stability (half life >40 min) as well as favorable pharmacokinetic behavior in the mouse after oral administration. Finally, molecule 12 (E° = -0.37 V/NHE) was shown to be bioactivated by type 1 nitroreductases, in both Leishmania and Trypanosoma, and appears to be a good candidate to search for novel antitrypanosomal lead compounds.

11.
ACS Infect Dis ; 6(3): 515-528, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31967783

RESUMO

Available treatments for Chagas' disease and visceral leishmaniasis are inadequate, and there is a pressing need for new therapeutics. Drug discovery efforts for both diseases principally rely upon phenotypic screening. However, the optimization of phenotypically active compounds is hindered by a lack of information regarding their molecular target(s). To combat this issue we initiate target deconvolution studies at an early stage. Here, we describe comprehensive genetic and biochemical studies to determine the targets of three unrelated phenotypically active compounds. All three structurally diverse compounds target the Qi active-site of cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Our studies go on to identify the Qi site as a promiscuous drug target in Leishmania donovani and Trypanosoma cruzi with a propensity to rapidly mutate. Strategies to rapidly identify compounds acting via this mechanism are discussed to ensure that drug discovery portfolios are not overwhelmed with inhibitors of a single target.


Assuntos
Antiparasitários/farmacologia , Citocromos b/antagonistas & inibidores , Descoberta de Drogas , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/genética , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Antiparasitários/química , Antiparasitários/isolamento & purificação , Doença de Chagas/tratamento farmacológico , Citocromos b/genética , Ensaios de Triagem em Larga Escala , Humanos , Leishmaniose Visceral/tratamento farmacológico
12.
ACS Med Chem Lett ; 10(1): 34-39, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30655943

RESUMO

Twenty nine original 3-nitroimidazo[1,2-a]pyridine derivatives, bearing a phenylthio (or benzylthio) moiety at position 8 of the scaffold, were synthesized. In vitro evaluation highlighted compound 5 as an antiparasitic hit molecule displaying low cytotoxicity for the human HepG2 cell line (CC50 > 100 µM) alongside good antileishmanial activities (IC50 = 1-2.1 µM) against L. donovani, L. infantum, and L. major; and good antitrypanosomal activities (IC50 = 1.3-2.2 µM) against T. brucei brucei and T. cruzi, in comparison to several reference drugs such as miltefosine, fexinidazole, eflornithine, and benznidazole (IC50 = 0.6 to 13.3 µM). Molecule 5, presenting a low reduction potential (E° = -0.63 V), was shown to be selectively bioactivated by the L. donovani type 1 nitroreductase (NTR1). Importantly, molecule 5 was neither mutagenic (negative Ames test), nor genotoxic (negative comet assay), in contrast to many other nitroaromatics. Molecule 5 showed poor microsomal stability; however, its main metabolite (sulfoxide) remained both active and nonmutagenic, making 5 a good candidate for further in vivo studies.

13.
Cell ; 176(1-2): 306-317.e16, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30503212

RESUMO

Trypanosome parasites control their virulence and spread by using quorum sensing (QS) to generate transmissible "stumpy forms" in their host bloodstream. However, the QS signal "stumpy induction factor" (SIF) and its reception mechanism are unknown. Although trypanosomes lack G protein-coupled receptor signaling, we have identified a surface GPR89-family protein that regulates stumpy formation. TbGPR89 is expressed on bloodstream "slender form" trypanosomes, which receive the SIF signal, and when ectopically expressed, TbGPR89 drives stumpy formation in a SIF-pathway-dependent process. Structural modeling of TbGPR89 predicts unexpected similarity to oligopeptide transporters (POT), and when expressed in bacteria, TbGPR89 transports oligopeptides. Conversely, expression of an E. coli POT in trypanosomes drives parasite differentiation, and oligopeptides promote stumpy formation in vitro. Furthermore, the expression of secreted trypanosome oligopeptidases generates a paracrine signal that accelerates stumpy formation in vivo. Peptidase-generated oligopeptide QS signals being received through TbGPR89 provides a mechanism for both trypanosome SIF production and reception.


Assuntos
Proteínas de Membrana Transportadoras/fisiologia , Percepção de Quorum/fisiologia , Trypanosoma/metabolismo , Diferenciação Celular , Sequência Conservada/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana Transportadoras/genética , Oligopeptídeos/genética , Oligopeptídeos/fisiologia , Filogenia , Proteínas de Protozoários/metabolismo , Percepção de Quorum/genética , Transdução de Sinais , Trypanosoma/fisiologia , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/parasitologia , Virulência/fisiologia
14.
Folia Microbiol (Praha) ; 62(4): 335-342, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28213748

RESUMO

White rot fungi (WRF) are applicable to biodegradation of recalcitrant pollutants. However, excessive biomass growth typical for WRF cultivation can hinder their large scale applications. Therefore, immobilization of Irpex lacteus to liquid-core alginate beads restricting excessive mycelium growth and simultaneously keeping high degradation rate of pollutants was tested. Effective diffusivities of dyes to the beads varied from (2.98 ± 0.69) × 10-10 to (10.27 ± 2.60) × 10-10 m2/s. Remazol Brilliant Blue R (RBBR), Reactive Orange 16 (RO16), and Naphthol Blue Black (NBB) were used as model dyes. The immobilized fungus decolorized model dyes when applied both in microwell plates and in fluidized bed reactors. Using the microwell plates, the apparent reaction rate constants ranged from (2.06 ± 0.11) × 10-2 to (11.06 ± 0.27) × 10-2 1/h, depending on the dye used and its initial concentration. High initial concentrations negatively affected the dye decolorization rate. No fungal growth outside the beads was observed in fluidized bed reactors and thus no operational problems linked to an excessive biomass growth occurred. When RBBR was decolorized in subsequent batches in the fluidized bed reactor, the apparent reaction rate constant increased from (11.63 ± 0.35) × 10-2 to (29.26 ± 7.19) × 10-2 1/h.


Assuntos
Corantes/metabolismo , Polyporales/metabolismo , Poluentes Químicos da Água/metabolismo , Alginatos/química , Biodegradação Ambiental , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Micélio/química , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Polyporales/química , Polyporales/crescimento & desenvolvimento
15.
Dis Model Mech ; 5(6): 940-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22563063

RESUMO

Nonsense mutations that result in the expression of truncated, N-terminal, fragments of the adenomatous polyposis coli (APC) tumour suppressor protein are found in most sporadic and some hereditary colorectal cancers. These mutations can cause tumorigenesis by eliminating ß-catenin-binding sites from APC, which leads to upregulation of ß-catenin and thereby results in the induction of oncogenes such as MYC. Here we show that, in three distinct experimental model systems, expression of an N-terminal fragment of APC (N-APC) results in loss of directionality, but not speed, of cell motility independently of changes in ß-catenin regulation. We developed a system to culture and fluorescently label live pieces of gut tissue to record high-resolution three-dimensional time-lapse movies of cells in situ. This revealed an unexpected complexity of normal gut cell migration, a key process in gut epithelial maintenance, with cells moving with spatial and temporal discontinuity. Quantitative comparison of gut tissue from wild-type mice and APC heterozygotes (APC(Min/+); multiple intestinal neoplasia model) demonstrated that cells in precancerous epithelia lack directional preference when moving along the crypt-villus axis. This effect was reproduced in diverse experimental systems: in developing chicken embryos, mesoderm cells expressing N-APC failed to migrate normally; in amoeboid Dictyostelium, which lack endogenous APC, expressing an N-APC fragment maintained cell motility, but the cells failed to perform directional chemotaxis; and multicellular Dictyostelium slug aggregates similarly failed to perform phototaxis. We propose that N-terminal fragments of APC represent a gain-of-function mutation that causes cells within tissue to fail to migrate directionally in response to relevant guidance cues. Consistent with this idea, crypts in histologically normal tissues of APC(Min/+) intestines are overpopulated with cells, suggesting that a lack of migration might cause cell accumulation in a precancerous state.


Assuntos
Proteína da Polipose Adenomatosa do Colo/química , Proteína da Polipose Adenomatosa do Colo/metabolismo , Movimento Celular , Transformação Celular Neoplásica/patologia , Genes Dominantes , Modelos Animais , Fragmentos de Peptídeos/metabolismo , Polipose Adenomatosa do Colo/patologia , Animais , Transformação Celular Neoplásica/metabolismo , Embrião de Galinha , Dictyostelium/citologia , Dictyostelium/metabolismo , Enterócitos/metabolismo , Enterócitos/patologia , Feminino , Intestino Delgado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linha Primitiva/metabolismo , Linha Primitiva/patologia
16.
Bioorg Med Chem Lett ; 21(15): 4622-8, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21700453

RESUMO

The previously described lead compound 5 is a potent and selective V(1A) antagonist with affinity at both the rat and human receptor, but displays poor oral bioavailability and moderate clearance. We report herein the successful optimisation of the pharmacokinetic (PK) properties to afford the potent, selective, orally bioavailable and CNS penetrant compound 15f. A custom optimisation approach was required which demonstrated the value of using early, rapid in vivo PK studies to show improvements in oral exposure. Such assays may be of particular value where low oral bioavailability is anticipated to be multifactorial (e.g., permeability, gut wall metabolism and/or transport) where satisfactory modelling of in vitro data is likely to be difficult within a drug discovery context.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos , Fenilalanina/análogos & derivados , Administração Oral , Animais , Disponibilidade Biológica , Humanos , Masculino , Peptídeos/química , Fenilalanina/síntese química , Fenilalanina/química , Fenilalanina/farmacocinética , Ligação Proteica , Ratos , Ratos Wistar , Receptores de Vasopressinas/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 21(12): 3813-7, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21596563

RESUMO

Synthesis and structure-activity relationships (SAR) of a novel series of vasopressin V(1b) antagonists are described. 2-(6-Aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide have been identified with low nanomolar affinity for the V(1b) receptor and good selectivity with respect to related receptors V(1a), V(2) and OT. Optimised compound 16 shows a good pharmacokinetic profile and activity in a mechanistic model of HPA dysfunction.


Assuntos
Acetamidas/síntese química , Antagonistas dos Receptores de Hormônios Antidiuréticos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Quinazolinonas/síntese química , Quinazolinonas/farmacologia , Acetamidas/química , Acetamidas/farmacologia , Animais , Células CACO-2 , Humanos , Concentração Inibidora 50 , Masculino , Estrutura Molecular , Quinazolinonas/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
18.
Bioorg Med Chem Lett ; 21(12): 3603-7, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21601454

RESUMO

The synthesis and preliminary structure-activity relationships (SAR) of a novel class of vasopressin V(1B) receptor antagonists are described. Hit compound 5, identified via high throughput screening of the corporate collection, showed good activity in a V(1B) binding assay (K(i) 63 nM) but did not possess the lead-like physicochemical properties typically required in a hit compound. A 'deletion approach' on the HTS hit 5 was performed, with the focus on improvement of physicochemical properties, yielding the selective V(1B) antagonist 9f (K(i) 190 nM), with improved druglike characteristics.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonamidas/química
20.
Bioorg Med Chem Lett ; 21(6): 1871-5, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21353540

RESUMO

Synthesis and structure-activity relationships (SAR) of a novel series of vasopressin V(1b) (V(3)) antagonists are described. 2-(4-Oxo-2-aryl-quinazolin-3(4H)-yl)acetamides have been identified with low nanomolar affinity for the V(1b) receptor and good selectivity with respect to related receptors V(1a), V(2) and oxytocin (OT). Optimised compound 12j demonstrates a good pharmacokinetic profile and activity in a mechanistic model of HPA dysfunction.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos , Quinazolinas/síntese química , Quinazolinas/farmacologia , Animais , Humanos , Quinazolinas/química , Quinazolinas/farmacocinética , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA